Combination of error


Expand EDUCATION

Error of a sum or a difference

  • If there is two quantities A and B . A can be represented in A士ΔA and B can be represented in B士ΔB then a third quantity Z whose value is A+B
  • Z=Z士ΔZ=(A士ΔA)+(B士ΔB)
  • 士ΔZ=士ΔA士ΔB
  • The maximum value of ΔZ is ΔA+ΔB
Error of a product or quotient

  • If there is two quantities A and B . A can be represented in A士ΔA and B can be represented in B士ΔB then a third quantity Z whose value is AB
  • Z=Z士ΔZ=(A士ΔA)(B士ΔB)
             Z士ΔZ=AB士BΔA士AΔB士ΔAΔB
Dividing LHS by Z and RHS by AB
            1士(ΔZ/Z)=1士(ΔA/A)士(ΔB/B)士(ΔA/A)(ΔB/B)
            (ΔA/A)(ΔB/B)⋍0
          ΔZ/Z=(ΔA/A)士(ΔB/B)
Hence the maximum relative error is 
           Î”Z/Z=(ΔA/A)+(ΔB/B)

  • If there is two quantities A and B . A can be represented in A士ΔA and B can be represented in B士ΔB then a third quantity Z whose value is A/B
  • Z=Z士ΔZ=(A士ΔA)/(B士ΔB)
  • (Z士ΔZ)(B士ΔB)=A士ΔA
  • ZB士ΔZB士ΔZΔB士ΔBZ=A士ΔA
  • Dividing LHS by ZB and RHS by A.





                    

No comments:

Post a Comment